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The simplest a-heating model assumes that 
fusion reactions start after the plasma stagnates
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The plasma is brought to a pressure Pno a using 
only a spherical piston (the imploding shell).

DT fusion plasma (hot spot)
P(0) = Pno a

FSC
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The dimensionless form of the energy balance
depends only on the no-a Lawson* parameter
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*J. D. Lawson, Proc. Phys. Soc. Lond. B 70, 6 (1957).
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The amplification of the yield caused by alpha heating 
is a unique function of the no-a Lawson parameter
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Generalized in 3-D in P.-Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010).



The scaling of the no-a Lawson parameter follows 
that of the ignition threshold factor* (ITFx)
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Newton’s law of the dense shell
confining the hot-spot pressure**
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*B. K. Spears et al., Phys. Plasmas 19, 056316 (2012).
**R. Betti et al., Phys. Plasmas 17, 058102 (2010).



The amplification of the yield caused by a heating 
is also a unique function of the Lawson parameter 
with a
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In high-foot implosions, the fusion yield increased
by about 2.5× because of a heating 
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N140520

1-D simulations
2-D simulations
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Ignition
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High-foot N140520:
tR á 0.8 g/cm2,  

Y = 9 # 1015,  MDT = 0.18 mg 

O. A. Hurricane et al., 
Phys. Rev. Lett. 115, 

055001 (2015).

Used in J. Lindl et al., Phys. Plasmas 21, 020501 (2014); 21, 129902(E) (2014).
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In a burning plasma, the a heating is the dominant 
power input to the fusion plasma
FSC
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The yield amplification caused by a heating 
depends exclusively on Qa
FSC
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Hydrodynamic equivalence provides a tool to scale 
the performance of OMEGA direct-drive implosions 
to NIF energies for symmetric illumination
FSC

Hydrodynamic scaling 

Direct drive
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Direct drive
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Scale 1:60
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Hydrodynamic scaling does NOT account for differences 
in laser–plasma interactions between OMEGA and the NIF.

3-D theory for R. Nora et al., Phys. Plasmas 21, 056316 (2014).



The hydrodynamic scaling holds 
in three dimensions
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Access to the burning-plasma regime requires about 50 kJ of HF targets 
in indirect drive and about 200 kJ of fusion energy for direct drive 
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Both direct and indirect drive must double the yield amplification
to access the burning-plasma regime.
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Despite the exciting results, the path to ignition is 
uncertain with current direct- and indirect-drive targets
FSC

No-a ignition parameter in terms of in-flight properties
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Increasing the IFAR* while preserving the YOC is a challenge.

*In-flight aspect ratio



Only half of the a energy can be counted when
determining Qa for ICF
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Two burning-plasma regimes are identified:
 a heating exceeds PdV work to the hot spot
 a heating exceeds PdV to hot spot + shell
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