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•   Cellular clocks in the brain. 
•   Pacemaker cells in the heart. 
• Flashing fire flies. 
•   Deep Brain Stimulation (DBS) 

treatment for Parkinson’s. 
• Pedestrians on a bridge 
• Many more 

 

Synchronization in Nature 

by Steven  
Strogatz 

Generic behavior involving a 
large ensemble of nearly 
identical oscillators that are 
weakly coupled. 
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Cellular clocks in the brain (day-night cycle).  
Yamaguchi et al., Science 302, 1408 (‘03). 

Activity of cells in the Supra- 
chiasmatic Nucleus (SCN) 
 
The daily pacemaker 
 
Dorsal cells don’t synchronize 
Top trace shows activity with multiple 
frequencies and phases 
 
 
 
 
Ventral cells synchronize 
Lower trace shows locked frequencies, 
but various phases 
 

Incoherent 

Coherent 



Phase Oscillators 

x1 
x2 

x3 

θi (t)

Dynamics of individual elements is in 
higher dimensional space 
 
Attraction to limit cycle  
Period Ti =2π/ωi 
 
With weak coupling to others, only the 
evolution of the phase is important. 

dθi (t)
dt

=ωi + coupling to others 

Competition between effects of 
coupling and spread in distribution 
of natural frequencies - Winfree 



Kuramoto Model (1975) 

dθi (t)
dt

=ωi +
k
N

sin θ j −θi( )
j=1

N

∑
Individual frequencies 
selected from a pdf 
g(ω). 

Introduce order parameter 
A “mean” field R(t) = 1

N
exp iθ j( )

j=1

N

∑

dθi (t)
dt

=ωi + k Im Re−iθi( )

Phases attract each other k = coupling strength 
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Order parameter measures the coherence 

R ≈1 R ≈ 0

R(t) = 1
N

exp iθ j( )
j=1

N

∑
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 Spontaneous Synchronization 
There is a transition to synchrony at a critical value of the coupling 
constant. 
         

ck

|R| 

k

Incoherence 

Synchronization 
Order parameter 
decays in time 

Order parameter 
grows in time and 
saturates. 



Nè∞ Limit: Shades of Vlasov 

Distribution Function f (θ,ω, t) g(ω) = f (
0

2π

∫ ω,θ, t)dθ

Evolution of DF 
∂f
∂t
+
∂
∂θ

dθ
dt

f
"
#
$

%
&
'
= 0

dθ
dt

=ω +K Im Re−iθ( )

R(t) = 1
N

exp iθ j( )
j=1

N

∑ → dθ dω f eiθ
−∞

+∞

∫
0

2π

∫

Flow in  θ 
Where did the dω/dt go? 



Connection to Landau Damping 

Linear theory: 
As tè∞  

R(t) = dω dθ f (ω,θ, t = 0)e−iωt∫∫ + Aest

Ballistic term Collective mode 

Collective Mode 
Dispersion Relation 1= k

2
χ (s) = k

2
dω g(ω)

s− iω∫

S. Strogatz, Sync, p64. 
“Paul (Matthews) gave a lecture at the University of Warwick... One of the Professors in 
the audience, George Rowlands, told Paul that what we were seeing was not so strange: 
It’s called Landau damping, and plasma physicists have known about it for 45 years.”   

Early attempts to understand onset of synchronization led to confusion  
“Incoherence was neutral by one measure stable by another”.  .S.S 
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 Spontaneous Synchronization 
There is a transition to synchrony at a critical value of the coupling 
constant. 
         g(ω) = PDF of natural oscillator frequencies ω. 

kc =
2

πgmax

ck

|R| 

k

Incoherence 

Synchronization 

gmax 

ω	


1= k

2
dω g(ω)

s− iω∫ =
k
2
πg(ω0 )

ω0	



s→ iω0 + 0



What We Found 

¢ A nonlinear solution for for the distribution function in the 
limit Nè∞. 

¢ The time evolution of the order parameter is that of a low 
dimensional system. 

¢ The nonlinear solution is a “weak” attractor 
 
 
Special case of Lorenzian   

Ott & Antonsen, Chaos 18, 037113 (‘08); and Chaos 19, 023119 (‘09). Also Ott, 
Hunt & Antonsen, Chaos 19, 023117 (‘09)] 

dR
dt
+ k
2
(|R |2 −1)R+ (−iω0+Δ)R = 0

g(ω) = Δ

π (ω −ω0 )
2 +Δ2#$ %&



Nonlinear Solution: the O-A  Ansatz 
A distribution function of the following form satisfies the 
kinetic equation. 

fOA (θ,ω, t) =
g(ω)
2π

1
1−α(ω, t)eiθ

−
1
2

"

#
$

%

&
'+ c.c

Where: 
∂
∂t
α + iω α +

k
2
Rα 2 − R*( ) = 0

Order Parameter: R(t) = dωg(ω)∫ α *(ω, t)

parametric dependence on ω 

d
dt
R(t) = dωg(ω)∫ ∂

∂t
α *(ω, t) = ...



Weak Attractor 

f (θ,ω, t) = fOA (θ,ω, t)+ frem (θ,ω, t)

In general, the distribution function is the sum of the O-A Ansatz 
and a remainder. O-A ansatz lies on a submanifold M in space of 
functions. 

You cannot show frem (θ,ω, t)→ 0 as t→∞

You can show dω dθ∫∫ frem (θ,ω, t) e
−iθ → 0 as t→∞

Solution for R(t) is an attractor 

•  M   is an invariant  
 submanifold. 
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 External Drive: 

Generalizations of the Kuramoto Model 

dθi
dt

=ωi +
k
N

sin(θ j −θi )
j=1

N

∑ +M0 sin(Ω0t −θi )
drive E.g., circadian rhythm. 

Ref.: Sakaguchi, ProgTheorPhys(‘88); Antonsen, Faghih, Girvan, & Ott, Platig,Chaos 18 
(‘08); Childs, Strogatz, Chaos 18 (‘08). 

Communities of Oscillators: 
A = # of communities; σ = community (σ = 1,2,.., s); 
Nσ = # of individuals in community σ. 

dθi
σ

dt
=ωi

σ + (kσσ '

N !σ

)
σ '=1

s

∑ sin(θ j
σ '−θi

σ +βσσ ')
j=1

Nσ '

∑
Refs, Barreto et al., PhysRevE (‘08);Martens et al., PhysRevE(‘09); Abrams,et 

al.,PhysRevLett(‘08); Laing, Chaos19(‘09); and Pikovsky & Rosenblum, PhysRevLett 101 
(‘08). 
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Generalizations of the Kuramoto Model  

Millennium Bridge Problem: 

 
 

d 2y
dt2

!

"
#

$

%
&+ν

dy
dt
+Ω2y = 1

M
fi

i
∑

(Bridge mode) fi (t) = fi0 cos(θi (t))

 (Walker force on bridge) 

 (Walker phase) 

  Ref.: Eckhardt, Ott, Strogatz, Abrams, & McRobie, PhysRevE 75, 021110(‘07); 
Abdulrehem and Ott, Chaos 19, 013129 (‘09). 

 

dθi
dt

=ωi − b
d 2y
dt2

"

#
$

%

&
'cos(θi +β)



Extensions: heterogeneous time delays 

R(t) = dτ h(τ )
0

∞

∫ dθ dω f (t −τ ) eiθ
−∞

+∞

∫
0

2π

∫

Critical Coupling versus Mean Delay 

Hysteresis with heterogeneous delays 

W.S.Lee, E.Ott, T.M.Antonsen, Phys.Rev.Lett. (‘09). 



Local spatial coupling 
W.S.Lee, J.G.Restrepo, E.Ott, & T.M. Antonsen, Chaos 21, 023122 (2011) 

R(t, x) = dn !x∫ q(x − !x ) dτ h(τ )
0

∞

∫ dθ dω f (t −τ , x ') eiθ
−∞

+∞

∫
0

2π

∫

Bars 

Blobs 

Spirals 



Unsolved Problem: Large but finite N 

Plasma approach:  dressed test particles  
 
Correlations, fluctuations, and stability of a finite-size network of coupled 
oscillators   Michael A. Buice and Carson C. Chow*,  PHYSICAL REVIEW E 76, 
031118 (2007) 
 
Applies to the incoherent state  k<kc 
 
What’s the problem? 
 
 - So far no settled theory applies to the transition  
    (Hong et al. PRE 2015, Daido PRE 2015 – scaling theory) 
 - To complicate matters:  Time averaging and ensemble averaging are not the same ! 
 - What is important?  Time average of a single realization  or ensemble average? 
 
* Nat’s academic brother 

TMA, E. Ott, Paul So, and Ernie Barreto 



Fluctuations at the Transition 

<|R|2> 

k/kc 

N = ∞N - finite 

Realization to 
realization variation 
in threshold 

fluctuation in R(t) 

Dressed test particles OK 
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The tale of three different realizations: 
Manny, Mo, and Jack 

May$11,$2015$ $ Page$1$of$6$
$

The$following$are$results$based$on$three$simulations,$each$with$populations$of$100,000$oscillators.$Each$
simulation$has$its$own$independent,$randomly@sampled$set$of$natural$frequencies$(omegas),$drawn$from$
a$Lorentzian$of$HWHH$1.$Each$also$uses$its$own$independent$set$of$randomly@chosen$initial$phases$
(thetas).$

I$call$the$three$cases$Manny,$Moe,$and$Jack.$

Below$I$show$results$for$K=1.9,$2.0,$and$2.08.$

PLEASE(NOTE(THAT(THE(GRAPHS(BELOW(THAT(SAY(K=2.8(ARE(INCORRECT(–(THEY(SHOULD(SAY(K=2.08(

$

$

$

$

$

May$11,$2015$ $ Page$2$of$6$
$

$

$

k/kc=0.85 

k/kc=1.0 

k/kc=1.04 

Temporal variations are only part of the story 

N = 100,000 



Changes is fluctuation levels 

Notes&for&July&15,&2015& & Page&1&of&1&
&

I&screwed&up&the&interpolation&(forgetting&a&logarithm),&so&I&don’t&have&the&Manny&pdf&where&

� �1/2 2AVG 1.N R � &But&the&new&data&points&that&I&do&have&show&a&deviation&from&the&linear&trend&on&

the&semiDlog&plot:&

&

&

&

October(22,(2015( ( Page(2(of(4(
(

(

(

As k is increased past kc distribution of 
R2 values evolves 

Different realizations transition at 
different k-values. 



Conclusion 
Plasma Physics has had, and will have a big influence on the 
understanding  and mathematical description of synchronization. 
 
The Kuramoto model has an exact nonlinear solution in the N- infinite 
limit that is a weak attractor. 
 
The correct description of the finite N with noise limit is still 
unresolved. 
 
Oh yes, and Happy Birthday Nat. 
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Generalizations (continued) 
•  Time varying link coupling strengths: P.So, B.Cotton, & 

E.Barreto, Chaos 18 (‘08). 

•  Distribution of heterogeneous link time delays:                                                
W.S.Lee, E.Ott, T.M.Antonsen, Phys.Rev.Lett. (‘09). 

•  Josephson junction circuits: S.Marvel, S.Strogatz, Chaos(‘09). 

•  Oscillators distributed in space with local coupling: This 
situation displays hysteresis, traveling fronts, spiral waves, 
target patterns, stationary spots, chimera, etc.                                       

     C.Laing, Chaos 18 (‘09); and W.S.Lee, J.G.Restrepo, E.Ott, & 
T.M.Antonsen, Chaos 21, 023122 (2011). 

 
•  Birdsong model compared with experimental data on 

canaries:L.M.Alonso, J.A.Alliende, & G.B.Mindlin, Europhys. 
Lett. (‘10). 

•  And others. 
 


