New and Emerging Concepts in Laser-Plasma Acceleration

or

how I learned that more waves is better than fewer

Gennady Shvets, The University of Texas at Austin

Solved and Unsolved Problems in Plasma Physics, March 28, 2016
The Timeline

Meet Nat at the DPP, present an FEL poster on a concept that does not work

MIT: apply for the DOE fellowship to work on alpha channeling

α-channeling work starts on Feb.1, stops in March.

Trip to Nizhny Novgorod \(\rightarrow \) Nat practices his Russian on me and students

Discovery of laser compression in plasma: at least three waves are needed!

“Fusion is very deep but not too broad; LP is very broad but not too deep”

“Engineers use fluid descriptions. Physicists go into the phase space!”

“\(\text{We’ll work on } \alpha\text{-channeling and then figure something out} \)”
Plasma bubble: the workhorse

Particle advances inside bubble \rightarrow gains energy from low-frequency electric field \rightarrow energy gain is limited by dephasing

$$H_{MF} \approx \frac{p_x}{2\gamma_b^2} - \Psi \rightarrow \Delta p_x = 2\gamma_b^2 \Delta \Psi$$

Can we do better??
Electrons motion inside the bubble and Direct Laser Acceleration

Electrons execute betatron motion with frequency ω_{β}

Transverse energy ϵ_\perp is reduced due to the conservation of the action $I_\perp = \epsilon_\perp / \omega_{\beta}$

Betatron frequency

$$\omega_{\beta} = \omega_p / (2\gamma)^{1/2}$$

Transverse energy

$$\epsilon_\perp \equiv p_\perp^2 / 2\gamma m_e + \omega_p^2 m_e^2 z^2 / 4$$

Break the adiabatic invariant by introducing an additional resonant laser pulse \rightarrow DLA

$$\omega_L - k_L v = (2n + 1) \frac{\omega_p}{\sqrt{2\gamma}}$$

$$\Delta \gamma = \frac{\Delta \epsilon_\perp / mc^2}{1 - c / v_{ph}}$$
Outline of the Talk

• How LWFA and DLA can work together, delay dephasing, and bifurcate the phase space
• How to inject electrons into the plasma bubble and have them experience synergistic DLA/LWFA
• Constant gradient DLA in the decelerating phase of the wake
• Mix-and-match: combining multiple lasers for DLA + LWFA
Can LWFA and DLA work together?

• DLA’s resonance condition can be undone by rapid wakefield acceleration: $\omega_L(1 - v_x/v_{ph}) = \omega_p/\sqrt{2\gamma}$

• DLA requires large \vec{v}_\perp because $A_L \propto \vec{v}_\perp \cdot \vec{A}_L$, but the conservation of I_\perp reduces $|\vec{v}_\perp|$ during acceleration!

• DLA laser pulse can distort the bubble and impede LWF acceleration or electron injection into the bubble

• Large amplitude of betatron oscillations may reduce the accelerating gradient experienced inside the bubble

But the benefits of combining the two could be substantial!

X. Zhang, V. Khudik, and GS, PRL 114, 184801 (2015)

X. Zhang, V. Khudik, A. Pukhov, and GS, PPCF 58, 034011 (2016)
Benefits of Synergistic Laser Wakefield & Direct Laser Acceleration

• Cumulative energy gain from LWFA and DLA

• Potentially higher energy gain from LWFA due to delayed dephasing

• Large transverse momentum $K = p_\perp/mc \rightarrow$ efficient source of X-rays and γ-rays up to K^3 harmonic of ω_L

• Combining multiple laser pulses (mid-IR + near-IR)

$$\frac{d\zeta}{d(ct)} \approx \frac{1}{2\gamma_b^2} - \frac{1 + \langle p_\perp^2/m_e^2c^2 \rangle}{\gamma^2}$$

X. Zhang et. al., PRL 114, 184801 (2015); PPCF 58, 034011 (2016)
Synergistic DLA/LWFA: single-particle simulations of a particle swarm

Swarm of initial conditions \((p_{\perp}, r_{\perp})\)

Necessary ingredients of DLA/LWFA synergy:

(a) electron injection with large transverse energy

(b) strong overlap between electrons and the laser

(c) betatron resonance between electrons and the laser

\[
\omega_d = \omega_L \left(\frac{1 + \left\langle p_z^2 / m^2 c^2 \right\rangle}{2 \gamma^2} + \frac{1}{2 \gamma_{ph}^2} \right)
\]
Can DLA happen in a plasma bubble?

Pump pulse creates a bubble

Density bump “shakes” the bubble \rightarrow side-injection with large p_\perp \rightarrow facilitates DLA

Self-injected electrons interact with the weaker laser pulse delayed by $\Delta \tau = 80$ fs

\begin{align*}
 n_0 &= 1.8 \times 10^{18} \text{ cm}^{-3}; \quad n_1 = 5.4 \times 10^{18} \text{ cm}^{-3} \\
 I_0 &= 6 \times 10^{19} \text{ w/cm}^2; \quad I_1 = 6 \times 10^{18} \text{ w/cm}^2 \\
 L_2 &= 1.6 \text{ mm}, \quad L_3 = L_4 = L_5 \approx 100 \mu\text{m}
\end{align*}

X. Zhang et al. PRL 114, 184801 (2015)
DLA inside a plasma bubble

after 1cm propagation

Electrons separated into two groups → DLA electrons with large p_\perp gain more energy and fall behind the non-DLA ones

Pump: $a_L = 5.3$, $\tau_L = 70\, fs$, $w_0 = 20\, \mu m$

DLA: $a_L = 1.7$, $\tau_L = 35\, fs$, $w_0 = 20\, \mu m$

Phase space bifurcation

Two-peak spectrum separated by 400 MeV

Bifurcation is absent without DLA pulse

$X.\, Zhang\, et.\, al.\, PRL\, 114,\, 184801\, (2015)$
Phase Space Correlations: Key to Synergy

DLA electrons \rightarrow strong correlation between total energy γmc^2 and transverse energy $\epsilon_\perp = \frac{p_\perp^2}{2\gamma m} + \frac{m\omega_p^2 p_\perp^2}{4}$

Strong bifurcation in (ϵ_\perp, γ) phase space

Synergy between DLA and LWFA \rightarrow higher energy gain from the wake for the DLA population \leftarrow delayed dephasing!

DLA electrons gain extra 200 MeV from the wake and extra 400 MeV from the laser (DLA)
DLA is compatible with ionization injection!

\[n_0 = 4 \times 10^{18} \text{ cm}^{-3} \]

\[I_{\text{pump}} = 2.3 \times 10^{19} \text{ W/cm}^2 \]

\[I_{\text{DLA}} = I_{\text{pump}}/2 \]

\[U_{\text{ion}} = 870 \text{ eV} \rightarrow \text{from } O^{7+} \text{ to } O^{8+} \]

Off-axis or off-peak phase ionization produces DLA electrons!
Off-peak phase ionization and “ricochet”
DLA electrons: real atoms meet meta-atoms

Off-peak ionization phase:
electrons leave the laser pulse with finite transverse momentum

\[
p_\perp + eA_\perp/c = eA_\perp(t_i)/c
\]

Ricochet electron starts out with large \(p_\perp \), interacts with the DLA pulse \(\rightarrow \) gains even larger \(p_\perp \) and more energy
One Step Back, Two Steps Forward: Laser Wakefield Decelerator + DLA

Initial conditions

Model: constant decelerating field E_W

Multiple DLA harmonics:

$$1 + \langle \frac{p_z^2}{m^2 c^2} \rangle = \frac{\omega_L}{2 \gamma^2} = \frac{N \omega_p}{\sqrt{2} \gamma}$$

Transverse energy growth
Who needs LWFA if DLA is so great?

\(\lambda_1 = 0.8 \mu m \) pulse:
\(P_1 = 170 \text{TW} \) \((a_1 = 6) \)
\(\tau_1 = 35 \text{fs}, \ w_1 = 12 \mu m \)
\(n_0 = 4 \times 10^{18} \text{cm}^{-3} \)

External injection into the decelerating phase
\(p_{x0} = 25m_e c \)

The wake decelerates the electrons, but the DLA accelerates them at more than twice the deceleration rate!
The mix-and-match approach to LA: the case for combining near- and mid-IR lasers

- Mid-IR lasers produce a large bubble $r_b \sim \lambda_p \sqrt{\alpha_L}$ because less dense plasma is used \Rightarrow large-amplitude betatron oscillations are not a problem

- Vector potential $\alpha_L \sim \lambda_L \sqrt{I_L}$ is large for modest laser intensity

- External electron injection into a large bubble is easy

- Unique opportunity for combining a mid-IR laser pulse ("work horse" that makes a bubble) with an ultra-short solid-state laser pulse ("surgical tool" that injects electrons, excites betatron oscillations, provides DLA)

Electric field or vector potential?

Ponderomotive potential: $\alpha_L^2 \sim \lambda_L^2 I_L$

Ionization rate of neutral gasses: $E_L \sim \sqrt{I_L}$

Direct Laser Acceleration gradient: $\vec{E}_L \cdot \vec{v}_\beta \sim \sqrt{I_L}$
Injection, LWFA, and DLA using a sequence of 2.0μm and a 0.8μm laser pulses

\[\lambda_0 = 2\mu m \text{ pulse:} \]
\[P_0 = 65\text{TW} \ (a_0 = 3.7) \]
\[\tau_0 = 45\text{fs}, \ w_0 = 30\mu m \]

\[\lambda_1 = 0.8\mu m \text{ pulse:} \]
\[P_1 = 33\text{TW} \ (a_1 = 1.6) \]
\[\tau_1 = 30\text{fs}, \ w_1 = 20\mu m \]

Time delay: \[\Delta t = 120\text{fs} \]

Electrons gain
400MeV from wake and 200MeV from
\[\lambda = 0.8\mu m \text{ laser: } 1^{st} \]
harmonic DLA
\[\omega_L(1 - v_z/v_p) = \omega_\beta \]
How the entire LPA paradigm may be changed by Direct Laser Acceleration

• Synchronization of externally injected beam is the key to injecting into the decelerating phase
• The main role of the bubble is not accelerate but to provide focusing field to undulating electrons
• Excellent source of X-ray and Gamma-ray radiation because of the large undulator parameter $K = p_\perp/mc$

$$\omega_c \sim 2\gamma^2 \omega_\beta \frac{K^3}{1 + K^2} \sim K^3 \omega_L$$
Conclusions from this talk: from the least important to the most

When one wave doesn’t do the job: bring more!

Watch what you are saying: people are actually listening and following!

“Fusion is very deep but not too broad; LP is very broad but not too deep”

“Engineers use fluid descriptions. Physicists go into the phase space!”

Happy Birthday, Nat!