

Massachusetts Institute of Technology

Plasma Science & Fusion Center

Plasma-material interactions & **RF** sustainment for steady-state tokamaks

Dennis Whyte Plasma Science and Fusion Center

Acknowledgements to many colleagues including P. Bonoli, R. Parker, S.G. Baek R. Mumgaard, Y. Popaly, B. LaBombard, G Wallace, N. Fisch, M. Garrett, G. Olynyk, B. Sorbom, J. Sierchio, and more

> Nat Fisch Symposium March 2016 psfc.mit.edu

Current Drive: Make-or-Break Unsolved Issue for tokamaks as fusion energy systems

- Failing or success of current drive will determine the fate of robust steady-state tokamak
 - > Recirculating power \rightarrow Need high efficiency
 - ➤ Disruption / transient avoidance → Current profile control
 - ➤ Achieving high gain + high H + moderate bootstrap → Both of the above!
- Coupled technical and scientific challenges of current drive in a 24/7 reactor environment
 - Coupling in power + launcher survival
 - Controlling current drive location
 - > Efficiency
- Recent technology (high-B superconductors) and conceptual breakthroughs (high-field launch + α channeling) provide much brighter prospects for steady-state tokamak reactor.

|||;_

New HTS technology → ARC Fusion Pilot 23 T peak field + size of JET/TFTR

500 MW fusion power

~350 MW GROSS electricity

~250 MW NET electricity

Operates away from all limits

New HTS technology → ARC Fusion Pilot 23 T peak field + size of JET/TFTR

B. Sorbom, et al Fusion Eng Design (2015)

500 MW fusion power

Grand Challenge: Continuous, efficient reliable current drive for 35 % I_r

Key ARC innovation: High-field launch + high B synergy → Steady-state

Drivers provide ~ 37% of current but only 7% of heating → Control with high gain!

PSFC

|||;;

5

Creating an Asymmetric Plasma Resistivity with Waves

1111

Karney, Fisch Phys. Fluids 28 (1985)

Mike Garrett (student): why not fit LH launcher on the high-field side "corner" in ~10 cm radial space between the inner high-T vessel and outer VV?

1111

PSFC

7

Wave coupling sets irreducible plasma contact at launcher → PMI challenge

11111

PSFC

Plasma-launcher interactions in Alcator C-Mod

Geometry plays defining role in PMI of non-axisymmetric launcher structures

Heat flux & erosion challenge to launcher is severe for Low-Field Side launchers

	LFS (min. n _e)	LFS (+local source)
$n_{e} (m^{-3})$	1018	~4x10 ¹⁸
T _e (eV)	10	20
q// (MW/m ²)	0.5	~ 2.5
// Flux (ion/s/m ²)	3x10 ²²	$2x10^{23}$
B _{perp} / B	~ 0.2	~ 0.2
q (MW/m ²)	0.2	1
Erosion rate (mm/year)	~ 6	~30

PSFC

This is the "upstream" location of the SOL. <u>No chance</u> of controlling q or erosion through // SOL physics

Basic plasma geometry and stability argue for High-Field Side launchers to solve PMI issues

The answer lies in the quiescent HFS SOL, particularly found in double-null configuration

Heat flux & erosion challenge to launcher structure mitigated by HFS launch B-field geometry & good curvature

	LFS (min. n _e)	LFS (+local source)	HFS (min. n _e)
$n_{e} (m^{-3})$	1018	~4x10 ¹⁸	1018
T _e (eV)	10	20	10
q// (MW/m ²)	0.5	~ 2.5	0.5
// Flux (ion/s/m ²)	3x10 ²²	$2x10^{23}$	3x10 ²²
B _{perp} / B	~0.2	~0.2	~0.04
q (MW/m ²)	0.2	1	0.04
Erosion rate (mm/year)	~ 6	~30	~1

111

Reactor power exhaust favors HFS launch and blanket space allows HFS launch

HFS vs. LFS Launch in prototypical FNSF conditions

HFS can provide
CD much deeper
into the plasma

Efficiency improves due to both lower n// and lower trapping effects.

ACCOME has optimized large advantages of HFS-LHCD + poloidal launch location near X-point for ARC

$\begin{array}{c} \textbf{Optimized CD efficiency leads to substantial} \\ \textbf{control of AT current profile below no-wall } \beta_N \\ \textbf{limit} \end{array}$

HFS-launch overcomes limitations of LFS LHCD in other designs

G. Wallace

ARC design: HFS launch at high B provides "Robust" steady-state with high gain + control

DT device	3	к	η_{20}	n ₂₀	β _N (~3 no-wall limit)	q*	R (m)	В (Т)	Q _p	I _{CD} /I _{BS}
FDF (FNSF) ¹	0.28	2.3	0.12 (ECCD)	2.2	3.7	2.8	2.7	5.5 (Cu)	2.6	~30%
ARIES- AT ²	0.25	2.2	0.25 (LH)	2.2	5	2.1	5.2	5.8 (SC)	50	~10%
ARC	0.35	1.9	> 0.4	2	2.5	~ 5	3.3	9.2	15	~40%

1 V. Chan et al. NF (2011) 083019 & A. Garofalo IAEA 2012

PSFC

2 F. Najmabadi et al. FED (2006) 3.

ADX: Purpose-built HFS access to demonstrate LHCD solutions in reactor-matched boundary plasma

- Launcher PMI & heat flux control
- **Explore magnetic** balance effect near DN
- **RF** isolation from ICRF \rightarrow high Te target plasmas
- CD efficiency & j(r)control versus launched n// and plasma density

HFS launch opens an exciting window to improve access to alpha-channeling → ultimate "answer" to extremely efficient CD efficiency

PHYSICS OF PLASMAS 22, 112103 (2015)

Alpha channeling with high-field launch of lower hybrid waves

I. E. Ochs,¹ N. Bertelli,² and N. J. Fisch^{1,2}

¹Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA ²Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

HFS launch opens an exciting window to improve access to alpha-channeling → ultimate "answer" to extremely efficient CD efficiency

111

HFS launch \rightarrow channeling effect in ARC-like plasma

- 9.9 T, 10 MA
- $T_{e0} = 15 \text{ keV}$
- $n_{e0} = 1.2 \times 10^{20} \text{ m}^{-3}$
- $f_0 = 2.4 \text{ GHz}$
- $N_{\parallel, init} = 1.55$

|||ii

- With HFS launch, LH wave could penetrate to hot core at reactor-relevant densities, providing the proper condition for the channeling effect.
- Challenges
 - PDI onset [Porkolab, 1977]
 - Use of the multi-wave RF-mediated diffusion system to ease the required the steep spatial gradient [Fisch, 1995]

Current Drive: Make-or-Break Unsolved Issue for tokamaks as fusion energy systems

- Failing or success of current drive will determine the fate of robust steady-state tokamak
 - > Recirculating power \rightarrow Need high efficiency
 - ➤ Disruption / transient avoidance → Current profile control
 - ➤ Achieving high gain + high H + moderate bootstrap → Both of the above!
- Coupled technical and scientific challenges of current drive in a 24/7 reactor environment
 - Coupling in power + launcher survival
 - Controlling current drive location
 - > Efficiency
- Recent technology (high-B superconductors) and conceptual breakthroughs (high-field launch + α channeling) provide much brighter prospects for steady-state tokamak reactor.

|||;_

Plasma Science & Fusion Center

Plasma Science and Fusion Center Massachusetts Insitute of Technology

psfc.mit.edu