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Running away and radiating

Runaway electrons in fusion plasmas

Tünde Fülöp, Department of Physics
Chalmers University of Technology, Sweden
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Runaway electron modelling workshop at Chalmers
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CTR Wilson 1924
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Runaways in plasmas
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Hot-tail generation
• In case of sudden cooling an
elevated tail of the distribution
can run away.

• Dominates if the timescale is
shorter than the collision time
at the critical velocity
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Knock-on/avalanche generation of runaways
Large-angle collisions
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• In a close Coulomb collision an
existing runaway electron can
throw a thermal electron above
the runaway threshold.

• Exponential growth of
runaways! Growth rate

γRA =
1

jRA

djRA
dt '

eE
2mec lnΛ

• Total number of e-folds during
an avalanche

γRAt ' eEt
2mec lnΛ

' Ip
IA lnΛ

where IA = 0.017 MA.

• Avalanche multiplication in
ITER ∼ e50
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Snowball effect (CTR Wilson’s notebook)
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Runaways in disruptions

• In tokamak disruptions:
• the plasma cools quickly,
• the resistivity η ∝ T−3/2

rises, and
• a high electric field is

induced to maintain the
plasma current.

• The pre-disruption current
is partly replaced by a
current of runaway
electrons:

• electrons are accelerated
to tens of MeV,

• usually hit the wall →
hard X-rays,

• can cause substantial
damage.

Carbon dust particles produced when runaways hit a
plasma-facing component in Tore Supra.
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Damaging potential is huge
“Several kg of molten material can be produced (and can be
moved around by gravity and j×B forces) by a single runaway
event.” [Progress in ITER Physics Basis, NF 47 S180 (2007)]

Control
• Can we control the runaway
beam formation?

Mitigation
• What are the destructive
effects and how can these be
mitigated?
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Control and/or mitigation

• Runaways can be suppressed
by

• increased collisional
suppression

• massive gas injection
• shattered pellet

injection
• solid pellet injection

• enhancement of losses via
magnetic perturbations

• δB/B ∼ 0.1%
required

[Hollmann et al, PP (2015)]

-I -I+I

[Papp et al, JPP (2015); PPCF

(2012) & (2011); NF (2011)]
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Radiation reaction forces

Synchrotron:
• Emitted by runaways due to
gyromotion, Ptot ∝ p2

⊥

Bremsstrahlung:
• Emitted in inelastic collision
between runaways and bulk
particles

Radiation emission is associated with a reaction force

• Critical field for runaway
is now E ∗c (> Ec)
[Stahl et al, PRL (2015)]
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Effect of synchrotron radiation reaction

• Runaway region shrinks to a region of small perpendicular
momenta.

• Bump on tail formation may be observed.
• Bump location ∝ typical runaway energy.

p
p

p

p

Runaway 
region

No radiation reaction With radiation reactionDistribution
function

[Hirvijoki et al, JPP (2015), Decker et al, PPCF (2016)]
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Improved modelling of bremsstrahlung losses

Previously, bremsstrahlung losses
were studied using an effective
friction force.

• Improved bremsstrahlung
model accounting for finite
photon energy, derived from
the Boltzmann collision
operator.

• A significant fraction of
runaway electrons reach at
least twice the energy allowed
in the “mean-force” model.
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Figure : Runaway-electron distribution for
E/Ec = 2, Zeff = 10 and ne = 3 · 1021 m−3.
With (lower) and without (upper) synchrotron
losses.

[Embreus, Stahl & Fülöp, submitted to NJP (2016)]
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Knock-on operator

Rosenbluth-Putvinski
• Primaries assumed to have infinite energy and

zero pitch angle.
• Secondary runaways can be generated with

higher energy than any of the existing
runaways!

• No change to incoming particle in collision –
does not conserve particle number, energy or
momentum
[Rosenbluth and Putvinski, NF 37, 1355 (1997)]

Chiu-Harvey operator
• Energy distribution of primaries accounted

for, assuming zero pitch angle.
• Secondary particle momenta restricted by

kinematics
[S.C. Chiu, et al., Nucl. Fusion 38, 1711 (1998),
R.W. Harvey et al., Phys. Plasmas. 7, 4590 (2000)]
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Comparison of the runaway growth rates

collision times
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• More accurate operator (Chiu-Harvey) produces more
runaways when the temperature is low and E/Ec large.

• Typical ITER disruption would lead to higher avalanche
growth rates than the simpler operator (Rosenbluth-Putvinski)
predicted.

[Stahl et al, to appear in NF (2016)]
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Electron-positron pair production in tokamaks

• Large quantities of
positrons are produced in
disruptions.

• Like electrons, positrons experience acceleration from the
electric field and slow down due to collisional friction and
radiation reaction.

• Positrons are produced with high energies. Most of them run
away and live long.

• Bremsstrahlung and synchrotron radiation from runaway
positrons is peaked in the direction opposite from that of the
runaway electrons.

[Helander et al, PRL (2003); Fülöp and Papp, PRL (2012)]
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• Probability of annihilation inside the plasma is negligible.
• Essentially all positrons will annihilate on the first wall.
• Annihilation spectrum could be used as a diagnostic tool.
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Conclusions

Although runaway electrons have been well known for almost a
century, new discoveries are continually made.

Runaway electrons expected to be a major problem in ITER
• Avalanche dominates in high current devices.
• Good modelling capacity is crucial!

Synchrotron and bremsstrahlung radiation reaction
• Reduces runaway growth rate for weak E fields.
• Can lead to bump-on-tail formation.

Opportunity to study relativistic phenomena
• Radiation reaction
• Pair production
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