

UNIVERSITY OF MARYLAND AT COLLEGE PARK

Dept. of Physics Dept. of Electrical and Computer Engineering Institute for Research in Electronics and Applied Physics

Is there order in the catastrophic collapse of optical beams?

N. Jhajj, I. Larkin, E.W. Rosenthal, J.K. Wahlstrand, S. Zahedpour, and H.M. Milchberg

Jared

Eric

Thanks to John Palastro, NRL, for help with simulation code

Fischfest ! March 28-30, 2016

Ultra short pulse propagation in gases

Braun, Korn, Mourou Optics Letters 1995

Some applications of filaments

- directed energy (?), directed intensity ($\sqrt{}$)
- triggering and guiding of electrical discharges (?) B. Forestier *et al.*, AIP ADVANCES 2, 012151 (2012)
 triggering of rain (?) P. Rohwetter et al., Nature Photonics 4, 451(2010)
- remote lasing of air molecules (?) Sprangle et al., Appl. Phys. Lett. 98, 211102 (2011)
- remote detection: LIBS, LIDAR $(?\sqrt{})$ J. Kasparian *et al.*, Science **301**, 61 (2003)
- directed, remote THz generation ($\sqrt{}$) ^{J. Dai et al, PRL 97, 103903 (2006), K. Y.} Kim et al., Nature Photonics 2, 605
- (2008) • high harmonic generation ($\sqrt{$) D. S. Steingrube et al., NJP 13, 043022 (2011)
- broadband light generation for few-cycle pulse generation ($\sqrt{}$) N. Zhavoronkov, Opt. Lett. 36, 529 (2011)
- directed energy/directed average power (√)
 remote detection (√)^{N. Jhajj et al., Phys. Rev. X 4, 011027 (2014), Phys. Today 2014} E. Rosenthal et al., Optica 1, 5 (2014)

Good introduction and early review of filaments:

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47-189 (2007).

Supercontinuum generation and pulse compression

Filamenting λ ~800 nm, 40 fs femtosecond pulse

Coherent white light beam

Nonlinear response of electrons in simple atom

Nonresonant response is instantaneous

Bound electron response

Perturbation regime: nonlinear self-focusing

Self-focusing beam collapse

Ionization and plasma defocusing

Ionization important at peak intensity > ~10¹³ W/cm²

 $dN_e/dt = N_0 \sigma I^K$ multiphoton ionization with K photons

$$n^2 = 1 + 4\pi \chi_{free\ elec} = 1 - \omega_p^2 / \omega^2 = 1 - N_e / N_{cr}$$
, $n \sim 1 - N_e / 2N_{cr}$

Air: Laser field alignment of linear gas molecules

Field alignment and quantum echoes of rotational wavepacket

See Y.-H. Chen *et al.*, Opt. Express **15**, 11341 (2007) for theoretical/ experimental description

Quantum description of rigid rotor

$$|j,m\rangle \exp(-i\omega_j t)$$
 eigenstate

where
$$\omega_j = E_j / \hbar = 2\pi c B j (j+1)$$
 (j: ≥0 integer)
 $B = h (8\pi^2 c I)^{-1}$ ("rotational constant")
 I : moment of inertia

Rotational wavepacket

$$|\psi\rangle = \sum_{j,m} a_{j,m} |j,m\rangle \exp(-i\omega_j t)$$

An intense fs laser pulse "locks" the relative phases of the rotational states in the wavepacket– (non-resonant Raman pumping of many *j* states)

Rotational quantum wakes in air

Measurement showing alignment and anti-alignment "wake" traveling at the group velocity of the pump pulse.

Probe filaments are steered/trapped or destroyed

What happens after the filament passes through the gas?

Post-filament gas evolution

N. Jhajj *et al.*, PRX **4**, 011027 (2014) J.K. Wahlstrand *et al.*, Opt. Lett. **39**, 1290 (2014)

Lensing of λ =532 nm pulses by ~10m quad thermal guide

The IREAP hallway!

Filament-induced thermal imprint 0.5 ms

1 ms

Even after collapse, filament cores appear phase linked—why??

We want to measure the beam phase INSIDE a filament (at peak intensity 10¹⁴ W/cm²) —*How to do this?*

Imaging the amplitude and phase inside a filament

arXiv:1604.01751

- 0-5 mJ at each position
- 100 shots at each energy
- Huge (z, P/P_{cr}) space

•

•

Helium cell for intensity profiles: Tony Ting, NRL

Phase at beam centre vs. laser power scan (helium cell at fixed position z_h =150cm, for example)

Toy model: Half plane wave

Spatio-temporal optical vortices (STOV)

Air propagation simulation: Appearance of STOV

Following a fixed plane ξ_v where vortex later appears:

Intensity and phase images at P/P_{cr} =4.4 collapse:

Core-periphery phase shift vs phase gradient:

arXiv:1604.01751

Conclusions

- Spatio-temporal optical vortices (STOVs) appear universally in the arrest of beam collapse. (For example, they should appear in relativistic self-focusing, where arrest is from electron cavitation)
- STOVs are embedded in the pulse and carry topological charge (a conserved quantity) which prevents them from decaying away – they can only be created and annihilated in topologically permissible ways
- Morphological and topological changes to pulses are linked to STOV movement, generation, and annihilation
- University of Maryland graduate students are awesome!

HAPPY BIRTHDAY, NAT & take the day off!

