DE LA RECHERCHE À L'INDUSTRIE

ADVANCED FOKKER-PLANCK CALCULATIONS IN COMPLEX MAGNETIC TOPOLOGIES

Y. Peysson

CEA, IRFM, F-13108, Saint-Paul-lez-Durance, France

Symposium in honor of Pr. Nathaniel J.Fisch

www.cea.fr

Marian Communist Communist Acknowledgements to M. Shoucri, J. Decker and A. Brizard

General context

Numerical Fokker-Planck solvers are powerful tools for studying particle dynamics either for astrophysical or laboratory plasmas → *extensively used in tokamaks (heating, current drive, runaway electron dynamics,…)*

LUKE: 3-D linearized bounce-averaged relativistic electron Fokker-Planck solver

J. Decker J. Decker, et al., *Plasma Phys. Contr. Fusion* 58, 025016 (2016) , Y. Peysson et al., *Phys. Plasmas* 21, 092504 (2014)

- § A Fokker–Planck equation is a deterministic equation for the time dependent probability density P(Y,t) of stochastic variables Y.
- § Based on general concepts (Markovian process), the Fokker-Planck equation may be applied to various domains of science, like mathematical finance.
- § In plasma physics, the « Fokker–Planck » equation is the nickname of the 6-D Vlasov-Fokker-Planck equation

$$
\frac{df}{dt} = \frac{\partial f}{\partial t} + \mathbf{\dot{x}} \cdot \nabla_{\mathbf{x}} f + \mathbf{\dot{p}} \cdot \nabla_{\mathbf{p}} f = C(f) + \dots
$$
\n
$$
\mathbf{\dot{x}} = \mathbf{v} = \mathbf{p}/\gamma
$$
\n(Vlasov)
\n
$$
\mathbf{\dot{p}} = e(\mathbf{E} + \mathbf{v} \times \mathbf{B})
$$
\n
$$
\begin{aligned}\n\mathbf{\dot{f}}, H\} \qquad \mathcal{O}(1/\log A)\n\end{aligned}
$$

Y. Peysson and J. Decker, *Fusion Science Tech.* 22, 65 (2014)

Coulomb collisions Fokker-Planck operator

- § *Small angle Coulomb collisions predominate →* may be considered as a *diffusion process* in momentum space (**Fokker-Planck operator**)
- § Large angle (knock-on) collisions due to highly relativistic particles must be considered apart (sink/source term) \rightarrow *runaway electron avalanches*

$$
C\left[f_s, f_{s'}\right](\mathbf{x}, \mathbf{u}) \equiv \frac{\Gamma_{ss'}}{2n_s} \frac{\partial}{\partial \mathbf{u}} \cdot \iiint d^3 \mathbf{u'} \mathbb{U}\left(\mathbf{u}, \mathbf{u'}\right) \cdot \left(\frac{\partial f_s\left(\mathbf{u}\right)}{\partial \mathbf{u}} \frac{f_{s'}\left(\mathbf{u'}\right)}{m_s} - \frac{f_s\left(\mathbf{u}\right)}{m_{s'}} \frac{\partial f_{s'}\left(\mathbf{u'}\right)}{\partial \mathbf{u'}}\right)
$$

$$
C\left[f_s, f_{s'}\right] = -\frac{\partial}{\partial \mathbf{p}} \cdot \left(\mathbf{K}_{ss'}\left[f_{s'}\right] f_s - \mathbb{D}_{ss'}\left[f_{s'}\right] \cdot \frac{\partial f_s}{\partial \mathbf{p}}\right)
$$

Conservative form very
convenient for numerical
implementation.

E. Nilsson, et al., *Plasma Phys. Contr. Fusion* 57, 095006 (2015)

$$
\Gamma_{ss'} \equiv \frac{n_s q_s c_{s'} \text{m} \Omega_{ss'}}{4\pi \varepsilon_0 m_s^2}
$$

Collision kernels

Foreseen, including and current development \mathcal{L}^{unv} s Collision kernels (m + 1/2) C

$$
\boxed{\mathbb{U}(\mathbf{v}, \mathbf{v}') = \frac{1}{m^3} (w^2 \mathbb{I} - \mathbf{w} \mathbf{w}) \qquad \mathbf{w} \equiv \mathbf{v} - \mathbf{v}' \qquad \text{(Rosenbluth potentials)}
$$
\n
$$
\mathbb{U}(\mathbf{u}, \mathbf{u}') = \frac{r^2}{\gamma \gamma' w^3} (w^2 \mathbb{I} - \mathbf{u} \mathbf{u} - \mathbf{u}' \mathbf{u}' + r (\mathbf{u} \mathbf{u}' + \mathbf{u}' \mathbf{u})) \qquad \text{(Braams-Karney potentials)}
$$

(Braams-Karney potentials) Non-relativistic Relativistic (Rosenbluth potentials) f ≃ f^M + δf (4.2) fM, f(m) (t, X, p) P^m (ξ) * ≃ C (fM, fM)=0,

$$
f \simeq f_M + \delta f
$$

Linearized collision operator
\n
$$
C(f, f) \simeq C(f, f_M) + C(f_M, f)
$$
\n
$$
f \simeq f_M + \delta f
$$
\n
$$
C(f_M, f) \simeq C\left(f_M, \frac{3}{2}\xi f^{(m=1)}(t, \mathbf{X}, p)\right)
$$

' Fp = −F (w) p) = −F (w) p) = −F (w) = −

 $\overline{}$

Y. Peysson *Solved and Unsolved Problems in Plasma Physics*, March 28-30, 2016, Princeton NJ, USA #5 parameter b = re/β†² th, which measures the mean effective distance between two colliding particles is since P¹ (ξ) = ξ. By construction the linearized electron-electron collision operator con-

First principle modeling with Fokker-Planck codes

From moments of the distribution functions *(J||, P, fast electron bremsstrahlung, ECE,…)*, quantitative comparisons between modeling and experiments

$$
J_{\parallel}(\mathbf{x}) = q_e \iiint d^3p \ v_{\parallel} f(\mathbf{x}, \mathbf{p}) \qquad P_{abs}^{\mathcal{O}}(\mathbf{x}) = \frac{\partial \varepsilon}{\partial t} \bigg|_{\mathcal{O}} = \int d^3p \ m_e c^2 \left(\gamma - 1 \right) \frac{\partial f(\mathbf{x}, \mathbf{p})}{\partial t} \bigg|_{\mathcal{O}}
$$

Y. Peysson and J. Decker, *Phys. Plasmas* 15, 092509 (2008) J. Decker, Y. Peysson et al., *Phys. Plasmas* 21, 092504 (2014)

First principle modeling with Fokker-Planck codes

Lower Hybrid wave current drive

Electron cyclotron wave power absorption

L. Curchod, et al., *Plasma Phys. Contr. Fusion* 53, 115005 (2011)

As part of a complex chain of codes, numerical Fokker-Planck solvers must be **fast**, **accurate** and **robust** while being able to describe multiple physical processes in complex magnetic topologies (synergistic effects).

Numerical challenge due to the large number of dimensions **3 (real space) + 3 (velocity space)**

A. Bécoulet et al, *Comp. Phys. Comm.* 177, 55 (2007) Y. Peysson and J. Decker, *Fusion Science Tech.* 22, 65 (2014)

Fokker-Planck code types

Particle tracking codes *(mostly for ion physics)*

- + realistic magnetic configurations (3D)
- + very complex particle orbits *(potatoe)*
- difficulty to cover full energy range $(bulk \leftrightarrow tail)$
- Noisy particle distribution (statistical) *(derivatives, moments)*
- intrinsically slow code
- + low memory consumption
- + well designed for parallel processing

SPOT, NEMO, TRANSP, ASCOT, …

Finite difference codes *(mostly for electron physics)*

- simplified magnetic configurations (2D)
- restricted types of particle orbits *(trapped/passing)*
- + full energy range *(bulk + tail)*
- + smooth particle distributions *(moments)*
- + intrinsically fast code *(reverse time scheme)*
- *-* high memory consumption *(large matrix)*
- parallel processing possible *(linear system solver)*

CQL3D (e/i), LUKE (e),…

Ion vs electron trajectories

α particle (3.5 MeV) in ITER

M. Schneider, et al., *Plasma Phys. Contr. Fusion* 47, 2087 (2005)

The number of dimensions must be reduced by appropriate averages (geometrical symmetry, physics ordering) → *FP equation may be solved by existing computers*

- § 2-D magnetic configuration, *toroidal axisymmetry* → φ toroidal angle averaging $(6-D \rightarrow 5-D)$
- The magnetic field line is a local axis of symmetry in velocity space $\rightarrow \varphi$ gyroangle averaging*, guiding-center physics* **(5-D → 4-D)**
- § *Low collisionality limit,* poloidal orbits are complete before particles are scattered-off by Coulomb collisions → θ poloidal angle averaging **(4-D → 3-D)**
- Nested poloidal magnetic flux surfaces with a single minimum of B for each $\psi \rightarrow$ *two types of particle orbits: trapped and passing*.
- Small parameter δ expansion of the distribution $f = f_0 + f_1 + f_2 + ...$

$$
\delta^2 \simeq \rho/R \simeq t_b/\Omega
$$

Y. Peysson and J. Decker, *Fusion Science Tech.* 22, 65 (2014) Y. Peysson and J. Decker, AIP Conf. Proc., 1069, 176 (2008)

$$
\partial f_0 / \partial t + \mathbf{v}_{cg} \cdot \nabla_{\mathbf{x}_R} f_0
$$

= $C (f_0) + Q (f_0) + T (f_0) + E (f_0)$

$$
\begin{bmatrix} E (f_0) = -\nabla_{\mathbf{p}} \left(e \langle \mathbf{E}_2 \rangle_{\Omega, \omega} \cdot f_0 \right) \stackrel{\text{electric field}}{=} \mathcal{Q} (f_0) \equiv \nabla_{\mathbf{p}} \cdot (\mathbb{D}_{ql} \cdot \nabla_{\mathbf{p}} f_0) \rightarrow \mathbb{D}_{ql} \propto ||\mathbf{E}_1||^2
$$

 $T (f_0) \equiv \nabla_{\mathbf{x}_T} \cdot (\mathbb{D}_{\mathbf{x}} \cdot \nabla_{\mathbf{x}_T} f_0) \stackrel{\text{radial transport}}{=} \mathbb{D}_{\text{swaves}}$
 $\mathbf{v}_{cg} \simeq p_{\parallel} \hat{\mathbf{b}} / \gamma + \mathbf{v}_D \text{drift velocity}$

Y. Peysson and J. Decker, AIP Conf. Proc., 1069, 176 (2008)

 $\{v_{ca} \cdot \nabla_{\mathbf{x}_B} f_0\} = 0$

 $\frac{1}{2}$ 2 \sum

 σ

 $\overline{}$

T

Very large advection term annihilated → Fokker-Plank equation well-conditionned by collisions.

 $t > t_{\text{bounce}}$

 $\partial \{f_0\}$ / $\partial t = \{C(f_0)\} + \{Q(f_0)\} + \{E(f_0)\}$

 $\{\mathcal{O}\} \equiv \frac{1}{\lambda \tilde{q}}$

low collisionality *→*

From particle dynamics projected at B = B_{min}

Y. Peysson and J. Decker, *Fusion Science Tech.* 22, 65 (2014) Y. Peysson and J. Decker, *Phys. Plasmas* 15, 092509 (2008) Feysson and J. Decker *Fusion Science Tech* 22, 65 (2014 r sson and J. Decker, *Fusion Science Tech. ZZ*, 65 (2014)

Y. Peysson and J. Decker, *Phys. Plasmas* 15,

Y. Peysson *Solved and Unsolved Problems in Plasma Physics*, March 28-30, 2016, Princeton NJ, USA #14 ward the core region of the core region of the plasma. When the plasma physics March 28, 20, 21
No benefits to position the core region of the product of the dotted lines of the dotted lines of the dotted li Y. Peysson **ing the boundaries between regions** Solved and Unsolved Problems in Plasma Physics, rate, since its validity holds as long as %*Zs*&1,30 which is

Conservative form of the bounce-averaged electron Fokker-Planck equation

LUKE

$$
\partial f^{(0)}/\partial t + \nabla \cdot \mathbf{S}^{(0)} = s_{+}^{(0)} - s_{-}^{(0)}
$$

Y. Peysson and J. Decker, *Fusion Science Tech.* 22, 65 (2014)

Implicit numerical formulation of the Fokker-Planck equation

Cross-derivatives consistent with boundary conditions are *critically important* to keep the numerical solution conservative (density)

Y. Peysson and J. Decker, *Fusion Science Tech.* 22, 65 (2014)

Y. Peysson *Solved and Unsolved Problems in Plasma Physics*, March 28-30, 2016, Princeton NJ, USA #16

~ 10+6x10+6 entries, highly sparse matrix

Best performances with **mu**ltifrontal **m**assively **p**arallel sparse direct **s**olver (MUMPS)

P. R. Amestoy et al., *Parallel Computing*,, 32, 136 (2006)

Beyond standard finite-difference Fokker-Planck calculations

The challenge is to describe numerically more complex kinetic problems, *keeping the advantages of smooth distributions (finite difference,…)* with high computational performances for integrated modeling (parallel processing).

- *1) finite-banana width effects → bootstrap current, Ware pinch, rf wave induced transport,… for non-Maxwellian distributions, 3-D problem*
- 2) high collisionality regime (SOL) → **4-D/5-D gyrokinetic problem**
- 3) 3-D magnetic configurations (MHD, turbulence, magnetic ripple, other magnetic configuration) → **5-D problem (guiding-center)**

Finite-banana width effects have been investigated numerically for non-Maxwellian distributions in the thin banana width limit → **small drift approximation**.

$$
\mathbf{v}_{cg} \simeq p_{\parallel} \hat{\mathbf{b}} / \gamma + \mathbf{v}_D \qquad \|\mathbf{v}_D\| / \|\mathbf{v}_{cg}\| \ll 1
$$

N. J E. Nilsson, et al., *J. Plasma Phys* 1 (2015) . Fisch and J. M. Rax*, Nucl. Fusion*, 32, 549 (1992)

Drift kinetic Fokker-Planck equations and bootstrap current calculations with rf waves

Finite banana width effects from an exact guiding-center Hamiltonian

Brizard, et al.., *Phys. Plasmas*, 16, 102304 (2009)

 1.14 Thin-orbit approximation \sim $\frac{1}{\sqrt{2\pi}}$

:

neglecting terms in ✏✏ and ✏²

Convection vector and diffusion tensor in the thin orbit approximation .
1:44 <u>iffu</u> on tensor

$$
\begin{cases}\n\mathcal{K}_{gc}^{\overline{\psi}} = \epsilon_{\psi}\delta\psi \left[\nu_{l} + \frac{1}{\xi}\nu_{t}\right] + \mathcal{O}\left(\epsilon^{2}, \epsilon\epsilon_{\psi}, \epsilon_{\psi}^{2}\right) & \text{thin orbit approximation: } \epsilon_{\psi} \equiv (\psi - \overline{\psi}) \\
\mathcal{K}_{gc}^{p} = -\left[1 - \epsilon\lambda_{gc} \frac{1 - \xi^{2}}{2\xi} \frac{\partial}{\partial\xi}\right] \nu_{l}p + \mathcal{O}\left(\epsilon^{2}, \epsilon\epsilon_{\psi}, \epsilon_{\psi}^{2}\right) & \text{Magnetic non-uniformity: } \epsilon \equiv \rho/L_{B} \ll \\
\mathcal{K}_{gc}^{\xi_{0}} = -\frac{1 - \xi_{0}^{2}}{2\xi} \left[\left(\epsilon_{\psi}\overline{\delta\psi} + \epsilon\lambda_{gc}\right) \nu_{l} + \frac{2\xi}{1 - \xi^{2}} \left(1 - \epsilon\lambda_{gc} - \epsilon\lambda_{gc} \frac{1 - \xi^{2}}{2\xi} \frac{\partial}{\partial\xi} + \epsilon_{\psi}\overline{\delta\psi} \frac{1 - \xi^{2}}{2\xi^{2}}\right) \nu_{t}\right] + \mathcal{O}\left(\epsilon^{2}, \epsilon\epsilon_{\psi}, \epsilon_{\psi}^{2}\right)\n\end{cases}
$$

$$
\begin{cases}\n\mathcal{D}_{g}^{\overline{\psi}\psi} = \mathcal{O}(\epsilon^{2}, \epsilon\epsilon_{\psi}, \epsilon_{\psi}^{2}) \\
\mathcal{D}_{g}^{pp} = \left[1 - \epsilon\lambda_{gc} \frac{1 - \xi^{2}}{2\xi} \frac{\partial}{\partial\xi}\right] D_{l} + \mathcal{O}(\epsilon^{2}, \epsilon\epsilon_{\psi}, \epsilon_{\psi}^{2}) \\
\mathcal{D}_{g}^{\epsilon_{0}\xi_{0}} = \frac{1 - \xi_{0}^{2}}{p^{2}} \frac{\xi^{2}}{\Psi\xi_{0}^{2}} \left[\left(1 - \epsilon\lambda_{gc} - \epsilon\lambda_{gc} \frac{1 - \xi^{2}}{2\xi} \frac{\partial}{\partial\xi} + \epsilon_{\psi} \frac{\partial}{\partial\psi} \frac{1 - \xi^{2}}{\xi^{2}}\right) D_{t} \\
+ \frac{1}{\xi} (\epsilon\lambda_{gc} + \epsilon_{\psi} \frac{\partial}{\partial\psi}) D_{\times}\right] + \mathcal{O}(\epsilon^{2}, \epsilon\epsilon_{\psi}, \epsilon_{\psi}^{2}) \\
\mathcal{D}_{g}^{p\xi_{0}} = - \epsilon_{\psi} \frac{\delta\psi}{p} \left[D_{l} + \frac{1}{\xi} D_{\times}\right] + \mathcal{O}(\epsilon^{2}, \epsilon\epsilon_{\psi}, \epsilon_{\psi}^{2}) \\
\mathcal{D}_{g}^{p\xi_{0}} = \frac{1 - \xi_{0}^{2}}{2p\xi_{0}} \left[(\epsilon_{\psi}\overline{\delta\psi} + \epsilon\lambda_{gc}) D_{l} \right. \\
\left. + \frac{2\xi}{1 - \xi^{2}} \left(1 - \epsilon\lambda_{gc} - \epsilon\lambda_{gc} \frac{1 - \xi^{2}}{2\xi} \frac{\partial}{\partial\xi} + \epsilon_{\psi} \frac{\partial}{\psi} \frac{1 - \xi^{2}}{2\xi^{2}}\right) D_{\times}\right] + \mathcal{O}(\epsilon^{2}, \epsilon\epsilon_{\psi}, \epsilon_{\psi}^{2}) \\
\mathcal{D}_{g}^{\overline{\psi}\xi_{0}} = - \epsilon_{\psi} \delta\psi \frac{1 - \xi_{0}^{2}}{p^{2}\xi_{0}} \left[D_{t} + \frac{\xi}{1 - \xi^{2}} D_{\times}\right] + \mathcal{O}(\epsilon^{2}, \epsilon\epsilon_{\psi}, \epsilon_{\psi}^{2})\n\end{cases}\n\text{meaning of} \
$$

 $/\psi \ll 1$

) Magnetic non-uniformity: ϵ Magnetic non-uniformity: $\, \epsilon \equiv \rho/L_B \ll 1 \,$

e
1

¹ ³⇠²

 \mathbb{R}

 \blacksquare

 \int_{Ω}

0 Classical Maxwellian bootstrap **CHASSIGH MAXWEMAN DOODTA**
current recovered analytically ∶ <mark>colli</mark>s 1 ✏*gc* ✏*gc* ¹ ⇠² (Lorentz collision operator)

2⇠

@⇠

(1.122)

LUKE preserved, but more off-) \blacksquare meaning of ξ is no more a **LUKE 2**: numerical algorithm of diagonals elements, Jacobian modified, and the physical cosine of the pitch-angle

J. Decker, Y. Peysson, et al., *Phys. Plasmas* 17, 112513 (2010)

Y. Peysson *Solved and Unsolved Problems in Plasma Physics*, March 28-30, 2016, Princeton NJ, USA #20

ψ

ψ

✓

1.14 Thin-orbit approximation

Solved and unsolved problems for Fokker-Planck calculations in tokamaks

