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General context

Numerical Fokker-Planck solvers are powerful tools for studying particle dynamics
either for astrophysical or laboratory plasmas → extensively used in tokamaks
(heating, current drive, runaway electron dynamics,…)

LUKELUKE

Lower Hybrid wave current drive Runaway electrons (ALD force)

J. Decker, et al., Plasma Phys. Contr. Fusion 58, 025016 (2016) J. Decker, Y. Peysson et al., Phys. Plasmas 21, 092504 (2014) 

LUKE: 3-D linearized bounce-averaged relativistic electron Fokker-Planck solver
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The « Fokker-Planck equation »

§ A Fokker–Planck equation is a deterministic equation for the time dependent
probability density P(Y,t) of stochastic variables Y.

§ Based on general concepts (Markovian process), the Fokker-Planck equation
may be applied to various domains of science, like mathematical finance.

§ In plasma physics, the « Fokker–Planck » equation is the nickname of the 6-D
Vlasov-Fokker-Planck equation

df
dt = �f

�t + ẋ ·�xf + ṗ ·�pf = C (f)

ẋ = v = p/�

ṗ = e (E + v �B)

(Vlasov) (Fokker-Planck)
O (1/ log �){f,H}

Particle orbits Coulomb collisions

+ …

Y. Peysson and J. Decker, Fusion Science Tech. 22, 65 (2014) 
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Coulomb collisions Fokker-Planck operator

rare

frequent

§ Small angle Coulomb collisions 
predominate → may be considered as 
a diffusion process in momentum
space (Fokker-Planck operator)

§ Large angle (knock-on) collisions due 
to highly relativistic particles must be
considered apart (sink/source term) → 
runaway electron avalanches

Conservative form very
convenient for numerical
implementation.

E. Nilsson, et al., Plasma Phys. Contr. Fusion 57, 095006 (2015) 
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Collision kernels

(Braams-Karney potentials)

Non-relativistic

Relativistic
(Rosenbluth potentials)

convection

diffusion

Chapter 4

Detailed description of physical

processes

4.1 Coulomb collisions

4.1.1 Small angle scattering

4.1.2 Linearized collision operator

The collision operator used in the calculations may be expressed as1

C (f) =
∑

s

∑

s′

C (f, fss′) + C (f, f) (4.1)

where
∑

s

∑
s′ C (f, fss′) describe interactions between electrons and ions of species s in

the ionization state s′ and C (f, f) is the self-collision contribution, as discussed in Ref.
[17]. For the electron-ion collisions, it is considered that fss′ is a Maxwellian distribution
function, the corresponding temperature being Tss′. In the application of the code here
foreseen, including RF heating and current drive, collisions dominate thermal particles,
and therefore the distribution function f may be expanded about the Maxwellian fM

according to the relation
f ≃ fM + δf (4.2)

The self-collision operator C (f, f) may be consequently approximated by its linearized
form

C (f, f) ≃ C (f, fM ) + C (fM , f) (4.3)

1The Fokker-Planck collision operator is here considered, corresponding to small angle scattering. For
very energetic electrons, i.e. when namely the kinetic energy exceed the Coulomb logarithm ln Λ† =
ln (λD/b) , large deflections must be taken into account. Here λD is the Debye length. Indeed, the impact
parameter b = re/β

†2
th, which measures the mean effective distance between two colliding particles is

always very large as compared to the classical electron radius re, since β†
th ≪ 1. However, for very energetic

electrons, the impact parameter may reach b = re, when electrons become highly relativistic. Consequently,
since the potential energy is close to the kinetic energy, π/2 deflections may occur much more frequently.
Since this effect is beyond the Fokker-Planck approximation and only concerns a small fraction of the
total number of electrons in the plasma, it is described by a source term SR which becomes significative
for electrons which runaway when the Ohmic electric field is large, like in the ramp-up phase or during a
disruption.
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∑

s

∑

s′

C (f, fss′) + C (f, fM) → ∇p · Sp (f) (4.4)

where component Sp and Sξ of the flux Sp are

Sp = −Dpp
∂f0

∂p
+

√
1 − ξ2

p
Dpξ

∂f0

∂ξ
+ Fpf0 (4.5)

Sξ = −Dξp
∂f0

∂p
+

√
1 − ξ2

p
Dξξ

∂f0

∂ξ
+ Fξf0 (4.6)

In the standard notations used in Ref. [18]
⎧
⎪⎪⎨

⎪⎪⎩

Dpp = A (ψ, p)
Dpξ = 0
Dξp = 0
Dξξ = Bt (ψ, p)

(4.7)

and {
Fp = −F (ψ, p)
Fξ = 0

(4.8)

The term C (fM , f) requires is specific treatment. By expanding f as a sum of Legendre
harmonics according to the relation

f (t,X, p, ξ) =
∞∑

m=0

(m + 1/2) f (m) (t,X, p)Pm (ξ) (4.9)

with

f (m) (t,X, p) =

∫ +1

−1
f (t,X, p, ξ)Pm (ξ) dξ (4.10)

one obtains

C (fM , f) =
∞∑

m=0

(m + 1/2) C
(
fM , f (m) (t,X, p) Pm (ξ)

)
(4.11)

By definition, f (m=0) (t,X, p) ≃ fM and, since P0 (ξ) = 1,

C
(
fM , f (m=0) (t,X, p) P0 (ξ)

)
≃ C (fM , fM) = 0,

The first non-zero term in the series is then kept, so that

C (fM , f) ≃ C

(
fM ,

3

2
ξf (m=1) (t,X, p)

)
(4.12)

since P1 (ξ) = ξ. By construction the linearized electron-electron collision operator con-
serves momentum, but not energy, so there is no need to introduce an energy loss term
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First principle modeling with Fokker-Planck codes

From moments of the distribution functions (J||, P, fast electron bremsstrahlung, 
ECE,…), quantitative comparisons between modeling and experiments

Tore Supra

Lower Hybrid wave current drive

Y. Peysson and J. Decker, Phys. Plasmas 15, 092509 (2008) J. Decker, Y. Peysson et al., Phys. Plasmas 21, 092504 (2014) 

Bremsstrahlung
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First principle modeling with Fokker-Planck codes

FAM

PAM

Lower Hybrid wave current drive

Tore Supra

E. Nilsson, et al., Nucl. Fusion 53, 083018 (2013) 

Electron cyclotron wave power absorption

TCV

L. Curchod, et al., Plasma Phys. Contr. Fusion 53, 115005 (2011) 
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As part of a complex chain of codes, numerical Fokker-Planck solvers must be fast,
accurate and robust while being able to describe multiple physical processes in
complex magnetic topologies (synergistic effects).

Wave solver
(RT, BT, FW) Fokker-Planck 

solver

DQL

σ(f(0))
f(0)

Wave power
equation

r, k, e, S

Pray

Pabs
Full-wave loop

RT/BT loop
f(0)(t)

f(0)(t+Δt)

Fokker-Planck codes and integrated modeling

Numerical challenge due to the large number of dimensions
3 (real space) + 3 (velocity space) 

heating/current drive module

(B, n, T)

Y. Peysson and J. Decker, Fusion Science Tech. 22, 65 (2014) A. Bécoulet et al, Comp. Phys. Comm. 177, 55 (2007) 
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CQL3D (e/i), LUKE (e),…

Fokker-Planck code types

+ realistic magnetic configurations (3D) 
+ very complex particle orbits (potatoe)
- difficulty to cover full energy range
(bulk ↔ tail)

- Noisy particle distribution (statistical)
(derivatives, moments)

- intrinsically slow code
+ low memory consumption
+ well designed for parallel processing

Particle tracking codes
(mostly for ion physics)

- simplified magnetic configurations (2D)
- restricted types of particle orbits 

(trapped/passing)
+ full energy range (bulk + tail)
+ smooth particle distributions (moments)
+ intrinsically fast code

(reverse time scheme)
- high memory consumption (large matrix)
- parallel processing possible 

(linear system solver)

Finite difference codes
(mostly for electron physics)

SPOT, NEMO, TRANSP, ASCOT, …
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Ion vs electron trajectories

α particle (3.5 MeV) in ITER

M. Schneider, et al., Plasma Phys. Contr. Fusion 47, 2087 (2005) 
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Finite-difference bounce-averaged electron
Fokker-Planck solvers

§ 2-D magnetic configuration, toroidal axisymmetry → φ toroidal angle averaging
(6-D → 5-D)

§ The magnetic field line is a local axis of symmetry in velocity space → ϕ
gyroangle averaging, guiding-center physics (5-D → 4-D)

§ Low collisionality limit, poloidal orbits are complete before particles are 
scattered-off by Coulomb collisions → θ poloidal angle averaging (4-D → 3-D)

§ Nested poloidal magnetic flux surfaces with a single minimum of B for each ψ → 
two types of particle orbits: trapped and passing. 

§ Small parameter δ expansion of the distribution f = f0 + f1 + f2 + …

The number of dimensions must be reduced by appropriate averages (geometrical
symmetry, physics ordering) → FP equation may be solved by existing computers

�2 � ⇥/R � tb/� ⇥/� � �2

Y. Peysson and J. Decker, AIP Conf. Proc., 1069, 176 (2008) Y. Peysson and J. Decker, Fusion Science Tech. 22, 65 (2014) 
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Electron Fokker-Planck equation for the zero
order distribution function f0

�f0/�tb + vcg ·�xRf0+

= C (f0) + Q (f0) + T (f0) + E (f0)

Q (f0) � ⇥p · (Dql ·⇥pf0) Dql � ||E1| |2
E (f0) = �⌅p

�
e ⇥E2⇤�,� · f0

⇥

T (f0) � ⇥xT · (Dx ·⇥xT f0)
rf waves

radial transport

electric field

vcg � p�b̂/� + vD p = p⇥b̂ + p�drift velocity
Y. Peysson and J. Decker, AIP Conf. Proc., 1069, 176 (2008) 
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{O} � 1
⇥q̃

�
1
2

⇤
⇧

⇥
T

⌅ �max

�min

d�
2⌅

1

|⌃̂·̂r|
r
ap

B
BP

⇤0
⇤ O

{vcg ·�xRf0} = 0

� {f0} /�t = {C (f0)} + {Q (f0)} + {E (f0)} + ...

�2 � ⇥� � 1

Bounce-averaged electron Fokker-Planck equation

Very large advection term annihilated → Fokker-
Plank equation well-conditionned by collisions.

VD = 0zero-banana width approximation →

t > tbounce

low collisionality →

f (0) ( , p, ⇠0) = {f0 ( , ✓, p, ⇠)}
{f0} = f (0)

0 (⇥, p, �0)
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From particle dynamics projected at B = Bmin

from the LFS to the HFS regions of the plasma !Fig. 8". The
normalization of the distribution function is kept constant.
Since the distribution function f remains almost unchanged
in the forward and backward directions, the increase of the
HXR emission with the poloidal angle indicated in Fig. 5
arises principally from the perpendicular dynamics in mo-
mentum space. The effect becomes stronger at larger radii,
since the trapped/passing boundary enlarges for high inverse
aspect ratio !#r /R !see Fig. 9". Such a tendency is consis-
tent with the experimental observations, the HFS/LFS asym-
metry being larger when the two maxima of the HXR line-
integrated profile are more distant. The ratio between the
HXR intensities at "=# and "=0 exhibits a parabolic shape
dependence with $, as shown in Fig. 10.

When the local HXR emission is integrated along each

chord, the observed HFS/LFS asymmetry is well reproduced
in amplitude, while the absolute level of the fast electron
bremsstrahlung is close to the experimental observation !Fig.
11". If the local emission at "=0 or "=# is enforced, the
asymmetry almost disappears. The very small difference may
be ascribed to the Shafranov shift, which tends to move to-
ward the LFS region the core region of the plasma. When
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FIG. 7. !Color" 2D contour plot of the electron distribution function f at the
radial position $=0.31 and for three different poloidal angles: !a" "=0 or
LFS, !b" "=# /2 or top position, and !c" "=# or HFS. The dotted lines
represent the boundaries between regions where electrons are trapped !T" or
passing !P". Note that in the HFS location, all electrons are passing. The flat
plateau in the distribution function sustained by the LH wave is clearly
visible in the region p$ %0 !cocurrent". The dotted-dashed lines delimit the
domain where quasilinear diffusion is effective. The red contour lines of f
correspond to electrons that contribute to the bremsstrahlung emission at k
=60 keV. When electrons have a kinetic energy lower than 60 keV !black
contour lines", they cannot be involved in the radiation process and satisfy
energy conservation. Thermal electrons cannot contribute to the nonthermal
bremsstrahlung since the threshold limit k=60 keV !blue circle" is far from
the bulk characterized by black circular contour lines.
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FIG. 8. !Color online" Variation of the distribution function f with the po-
loidal angle " along the p$ =0 axis !solid line", and along the directions
p!=0, p$ &0 !dashed line" and p!=0, p$ %0 !dot-dashed line" at the radial
position $#0.31. Only the perpendicular dynamics is affected by the poloi-
dal effect.
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FIG. 9. !Color online" Relative variation of the fast electron bremsstrahlung
at a photon energy of k=70 keV as a function of the poloidal angle " for
three different radial positions: $=0.14 !solid curve", $=0.28 !dashed
curve", and $=0.44 !dot-dashed curve". The effect is increasing with the
inverse aspect ratio.
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HFS

LFS

Y. Peysson and J. Decker, Fusion Science Tech. 22, 65 (2014) Y. Peysson and J. Decker, Phys. Plasmas 15, 092509 (2008) 

used as input for calculating the Legendre coefficients. Since
the pitch-angle grid on which f!t ,! ," , p ,#" is evaluated does
not match the abscissas xj, the distribution function is first
interpolated by a cubic spline method before calculating co-
efficients f !m"!t ,! ," , p". The mean angular width #"e$ of f
being usually larger than #$$e−i%e−e& at energies about
200 keV, the Legendre polynomial expansion up to m=40
for the distribution function offers high margins concerning
the numerical accuracy of all bremsstrahlung calculations.

In pure hydrogen plasmas with an effective charge less
than 2, the e−e contribution becomes significant and may
reach more than 10% above k=100 keV. Even if the relative
part arising from e−e bremsstrahlung vanishes rapidly when
the effective charge of the plasma increases because of the Zs

2

dependence of the e− i cross section, this contribution is al-
ways calculated using the analytic expression derived in the
relativistic first Born approximation.29 The Coulomb correc-
tion is fully considered for a correct description of the tip
region, i.e., when k'Ec.

Several expressions of the bremsstrahlung cross section
may be used for the e− i contribution. For hot hydrogen plas-
mas, the relativistic Bethe–Heitler formula derived also in
the first Born approximation combined with the Elwert factor
for Coulomb corrections is appropriate as far as low Zs ions
like carbon or oxygen are concerned.26,30 Its domain of va-
lidity is %Zs&', where %=qe

2 /(c is Sommerfeld’s fine-
structure constant, ( being Planck’s constant. When much
heavier ions must be considered, such as iron, tungsten, or
molybdenum, the e− i bremsstrahlung cross section calcu-
lated using Sommerfeld–Maue eigenfunctions is more accu-
rate, since its validity holds as long as %Zs&1,30 which is
accurate enough as compared to exact tabulated values.31

Since computing power has dramatically increased, the ex-
pression of the e− i cross section based on Sommerfeld–
Maue eigenfunctions is now systematically used in the
bremsstrahlung calculations.

The fast electron bremsstrahlung is calculated by the nu-
merical code R5-X2 written in the MATLAB language.32 It is an
additional module of the 3−D relativistic bounce-averaged
Fokker–Planck solver LUKE designed for rf current drive
simulations in tokamaks and RFP machines.15 With this tool,
successful simulations of the HXR emission have been per-
formed for the tokamaks Tore Supra, TCV, HT-7, C-Mod,
FTU but also for the RFP machine MST. Examples of the
R5-X2 code capabilities are presented in the next section with
a particular emphasis on the combined role played by the
trapped electrons and the helical winding of the magnetic
field lines on the lack of poloidal uniformity of the fast elec-
tron bremsstrahlung on a magnetic flux surface.

V. FAST ELECTRON BREMSSTRAHLUNG
SIMULATIONS

A. HXR emission during lower hybrid current drive
in the tokamak tore supra

First experimental indications which suggested that the
fast electron bremsstrahlung could be nonuniform poloidally
on a magnetic flux surface were given by the vertical camera
of the HXR tomography, whose chords are probing the HFS

and LFS sides of the plasma with respect to the magnetic
axis.3 When the LH power absorption peaks off-axis, the
line-integrated HXR profile is broad and exhibits usually two
well separated maxima which are placed almost symmetri-
cally with respect to the central chord #42, as shown in Fig.
5 for the helium discharge #28334 at the time slice t=7.2 s
and in the photon energy interval 60–80 keV. In this case,
the plasma current, which reaches 0.7 MA, is fully sustained
by 4 MW of LH power, the mean refractive index parallel to
the magnetic field direction at the antenna being #N(0$=2.0 as
indicated in Ref. 1. For this type of discharge, which is rep-
resentative of the full current drive regimes achieved rou-
tinely during the 1999 experimental campaign,1,33,34 a sys-
tematic excess of the HXR signal is observed in the HFS
region as compared to the LFS one. The relative difference,
which is about 12% as shown in Fig. 5, is beyond the statis-
tical uncertainty associated with the sampling time )t
=16 ms. It tends to increase when the two maxima are more
distant, i.e., when the LH power absorption is increasingly
off-axis. Since 2003, the vertical camera has been tilted by
an angle * /2 and is placed in a horizontal position, so that
chords are now probing the up/down regions of the plasma
with respect to the equatorial midplane.35 For full LH current
drive discharges whose characteristics are almost similar to
those performed in 1999, the two maxima in the line-
integrated emission are well observed, but the levels of the
HXR signals are symmetric. Such a difference suggests that

FIG. 5. Line-integrated HXR emission profile between 60 and 80 keV as
measured by the vertical camera of the tokamak Tore Supra during the
discharge #28334 at time slice t=7.2 s. Statistical error bars correspond to a
sampling time of 16 ms. The vertical dashed line indicates the position of
the chord #42 viewing approximately the center of the plasma. This line
separates the group of chords !21 to 41" probing the HFS side of the plasma
from the other group of chords !43 to 59" probing the LFS region. The thick
line corresponds to the simulation of the discharge using the LH model
introduced in Sec. V A. In this case, fast electron bremsstrahlung calcula-
tions incorporate both the effects of trapped electrons and the helical wind-
ing of the magnetic field lines.
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�f (0)/�t +⇥ · S(0) = s(0)
+ � s(0)

�

Conservative form of the bounce-averaged
electron Fokker-Planck equation

⇤ ·S(0) =
B0

q̃�

⌅

⌅⇤

⇤
q̃�

B0
⇥⇤⇤⇥S(0)

⇥

⌅
+

1
p2

⌅

⌅p

�
p2S(0)

p

⇥
� 1

�p

⌅

⌅⇥0

⇤
�
⇧

1� ⇥2
0S(0)

�

⌅

⇤ ·S(0) =
B0

q̃�

⌅

⌅⇤

⇤
q̃�

B0
⇥⇤⇤⇥S(0)

⇥

⌅
+

1
p2

⌅

⌅p

�
p2S(0)

p

⇥
� 1

�p

⌅

⌅⇥0

⇤
�
⇧

1� ⇥2
0S(0)

�

⌅

momentum space

configuration 
space

S(0) = �D(0) ·⇥f (0) + F(0)f (0)

orbit effect

Y. Peysson and J. Decker, Fusion Science Tech. 22, 65 (2014) 

LUKE
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Implicit numerical formulation of the
Fokker-Planck equation

15d Radial dynamics

(r1)

(r2)

(r3)

(r4)

(r5)

Momentum 
dynamics

~ 10+6x10+6 entries, highly sparse matrix

r1

r2 > r1

r3 > r2

Best performances with multifrontal massively
parallel sparse direct solver (MUMPS)

Cross-derivatives consistent with boundary
conditions are critically important to keep the
numerical solution conservative (density)

Y. Peysson and J. Decker, Fusion Science Tech. 22, 65 (2014) 

 
bA
�t

+ bB
!
X(k+1) =

 
bA
�t

!
X(k) + bC

⇣
XM , X(k)

⌘
+ bS(k)

R

Transport induced-trapping

P. R. Amestoy et al., Parallel Computing,, 32, 136 (2006)
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Beyond standard finite-difference
Fokker-Planck calculations

The challenge is to describe numerically more complex kinetic problems, keeping
the advantages of smooth distributions (finite difference,…) with high computational
performances for integrated modeling (parallel processing).

1) finite-banana width effects → bootstrap current, Ware pinch, rf wave
induced transport,… for non-Maxwellian distributions, 3-D problem

2) high collisionality regime (SOL) → 4-D/5-D gyrokinetic problem
3) 3-D magnetic configurations (MHD, turbulence, magnetic ripple, other magnetic

configuration) → 5-D problem (guiding-center)

vcg � p�b̂/� + vD ⇥vD⇥ / ⇥vcg⇥ � 1

Finite-banana width effects have been investigated numerically for non-Maxwellian
distributions in the thin banana width limit → small drift approximation.

E. Nilsson, et al., J. Plasma Phys 1 (2015) N. J. Fisch and J. M. Rax, Nucl. Fusion, 32, 549 (1992)
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Drift kinetic Fokker-Planck equations and 
bootstrap current calculations with rf waves

� {f0} /�t = {C (f0)} + {Q (f0)} + {E (f0)} + ...

f = f0 + f1 = f0 + f̃ + g

LUKE

Bootstrap current

4 Fokker-Planck equations to be
solved for 1 effective radial position

Y. Peysson et al., AIP Conf. Proc. 787, 269 (2005) Used for rf current drive in ITB’s
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Finite banana width effects from an 
exact guiding-center Hamiltonian
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Derive an exact guiding-center Hamiltonian and 
Poisson bracket (Lie transform)
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divergence form
Brizard, et al.., Phys. Plasmas, 16, 102304 (2009) 
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Convection vector and diffusion tensor 
in the thin orbit approximation
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1.13.8 Calculation of Dp⇠0
gc = D⇠0p
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1.13.9 Calculation of D ⇠0
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1.14 Thin-orbit approximation

In the thin-orbit approximation, ✏ ⌘ �
 �  

�
/ ⌧ 1. The guiding-center coefficients can therefore be expressed,

neglecting terms in ✏✏ and ✏2 :
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J. Decker, Y. Peysson, et al., Phys. Plasmas 17, 112513 (2010) 
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where ⌫l, ⌫t, Dl, Dt and D⇥are function of ( , ✓, p, ⇠).

1.15 Guiding-center gyro-radius vector ⇢✏

The particle position reads

x = X+ ⇢✏ = T�1
✏ X = X� ✏Gx
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We can deduce using ⇢✏ ⌘ ⇢0 + ⇢1 + . . .:
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with
G

x

1 = �⇢0 (1.127)
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Using (1.66) and the expressions for G⇠
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1.13.8 Calculation of Dp⇠0
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1.13.9 Calculation of D ⇠0
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We can deduce

D ⇠0
gc =� � 

1� ⇠20
p2⇠0


Dt + �gc

✓
Dl

2

�Dt

◆
+

� 

2⇠2
�
Dt + ⇠2 [Dl �Dt] +

�
1� ⇠2

�
�gc [Dl �Dt]

�

� 1� ⇠2

2⇠
�gc

� 

2

@

@⇠
(Dl �Dt)� 1� ⇠2

2⇠
�gc

✓
1 +

� 

2⇠2

◆
@Dt

@⇠

+

⇠

1� ⇠2

✓
1 +

1� 2⇠2

⇠2
�gc + � 

1� ⇠2

⇠


1 +

1� 3⇠2

2⇠2
�gc

�◆
D⇥ � 1� ⇠2

2⇠
�gc

✓
⇠

1� ⇠2
+

� 

⇠

◆
@D⇥
@⇠

�
+O �

✏2
�

(1.115)

1.14 Thin-orbit approximation

In the thin-orbit approximation, ✏ ⌘ �
 �  

�
/ ⌧ 1. The guiding-center coefficients can therefore be expressed,

neglecting terms in ✏✏ and ✏2 :
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Thin orbit approximation:

Magnetic non-uniformity: ✏ ⌘ ⇢/LB ⌧ 1

Classical Maxwellian bootstrap
current recovered analytically
(Lorentz collision operator)

LUKE 2: numerical algorithm of 
LUKE preserved, but more off-
diagonals elements, Jacobian
modified, and the physical
meaning of ξ is no more a 
cosine of the pitch-angle
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Solved and unsolved problems for 
Fokker-Planck calculations in tokamaks

ITER, scenario IV

3-D
Particle tracking
codes (anomalous
orbits)

4-D/5-D gyrokinetic
FEM code for SOL

3-D finite-difference codes 
(zero-banana width). Finite-orbit
width effects soon implemented
for LUKE code (regular orbits)

5-D guiding-center 
calculations (finite-
difference method)

island

t > ttoroidal

W A Hornsby, et al., Plasma Phys. Contr. Fusion 52, 075011 (2007)


