Challenging tasks in laser wakefield acceleration with PW lasers

Chang Hee Nam Center for Relativistic Laser Science (CoReLS), Institute for Basic Science (IBS) & Gwangju Institute of Science and Technology (GIST), Korea

Relativistic Laser Intensities

Atomic field strength:
$$
E_B = \frac{e}{r_B^2} \approx 5.1 \times 10^9 \text{ V/cm}; \quad I_B = \frac{cE_B^2}{8\pi} \approx 3.5 \times 10^{16} \text{ W/cm}^2
$$

$$
a_0 = \frac{v_{NR}}{r_B} = \frac{eE_0}{r_B} = \frac{eA_0}{r_B^2} = \frac{\text{speed of nonrelativistically oscillating electron}}{1 - 61.14}
$$

 $v_{0} \equiv \frac{v_{NR}}{a} = \frac{eE_{0}}{mQ_{0}a} = \frac{eA_{0}}{mQ_{0}a^{2}}$ $\overline{0}$ speed of nonrelativistically oscillating electron speed of light $\frac{M}{C} = \frac{eE_0}{m_e\omega_0c} = \frac{eE}{m_e}$ $\frac{v_{NR}}{c} = \frac{eE_0}{m_e\omega_0 c} = \frac{eA_0}{m_e c}$ $\begin{align*} \text{DML} \text{Hell} \text{ is the same as } \mathcal{L}_B = \frac{1}{r_B^2} \approx 5. \ \text{and} \ \mathcal{L}_B = \frac{v_{NR}}{m} = \frac{eE_0}{m_s c} = \frac{eA_0}{m_s c^2} = \frac{\text{speed of no}}{m_s c^2} \end{align*}$

When $a_0 = 1$, $v = 0.7 c$. For $a_0 > 1$, relativistic.

Intensity for relativistic electron: (Relativistic regime)

Intensity for relativistic proton: (Ultra-relativistic regime) For $a_0 = \frac{M_p}{m} = 1800$, ultra-relativistic. \overline{M}_p m_e $a_0 = \frac{M_p}{m} = 1800$

$$
I_{\text{Re}} \approx \frac{1.4 \times 10^{18}}{(\lambda^2)_{\mu m}} a_0^2 \text{ W/cm}^2
$$

$$
I_{Rp} \approx \frac{4.5 \times 10^{24}}{\left(\lambda^2\right)_{\mu m}} \text{ W/cm}^2
$$

Research Groups at CoReLS, Inst for Basic Science

Exploration of Relativistic Laser-Matter Interactions using Ultra-high Intensity Lasers

1. PW Ti:sapphire laser

2. Laser wakefield electron acceleration

PW Ti:Sapphire Laser at CoReLS

Upgrade: High Contrast, 20 fs, 4 PW Laser

Installation of 4-PW amplifier

Pulse Compression Gratings

1. PW Ti:Sapphire laser

2. Laser wakefield electron acceleration A. LWFA with PW lasers – 10 GeV e- beam B. Compton backscattering – MeV g**-ray**

PW Laser Experimental Area

Multi-GeV e-Beam Generation with Dual Gas Jets

Coherent Control of Laser-Matter Interactions

STATISTICS

where

Coherent Control of Laser-Matter Interactions
\nspectral phase:
$$
\rho(\omega) = \varphi_0 + \varphi_1 \frac{\omega - \omega_0}{1!} + \varphi_2 \frac{(\omega - \omega_0)^2}{2!} + \varphi_3 \frac{(\omega - \omega_0)^3}{3!} + ...
$$
\nwhere $\varphi_2 = \frac{d^2 \varphi}{d\omega^2}\Big|_{\omega = \omega_0}$ = group-delay dispersion (GDD) = linear chirp,
\n
$$
\varphi_3 = \frac{d^3 \varphi}{d\omega^3}\Big|_{\omega = \omega_0}
$$
 = 3rd-order spectral phase (TOD) = quadratic chirp

Contract Contract

LWFA with chirp-controlled PW laser pulses

Control of spectral phase: GDD

26 J on target, focal spot \sim 35 micron, Ne = 1.4x10 $^{\rm 18}$ cm $^{\rm -3}$, 10 mm cell length

Electrons over 2 GeV from a 10-mm gas cell

Gas cell length = 10 mm Positively chirped 61 fs Intensity = $2x10^{19}$ W/cm² (a₀=3)

Electron energy spectrum

Smooth propagation over the whole medium length of 10 mm

Electron energy > 2 GeV

All-Optical Compton Experiments

Laser Compton γ-ray production via interaction of **GeV e-beam** with a laser beam of **10¹⁸ - 10²²W/cm² Compton backscattering:** $e^- + \omega_0 \rightarrow e^- + \gamma$ MeV-Gamma beams useful for photo-nuclear physics $\frac{1}{1000} \text{cot } \theta - \text{nuclear}$

Nonlinear Compton Scattering: $e^{-} + n\omega_0 \rightarrow e^{-} + \gamma$ Measuring radiation reaction effects Energy loss and radiation damping (cooling) of the electron beam Assessing QED Electron-positron pair creation: $y + n\omega_0 \rightarrow e^- + e^+$ Only one experiment with 46.6 GeV linac e-beam and $a_0 = 0.36$ D.L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997)

Optical Layout for LWFA with the 4 PW laser

PW Laser Experimental Area ('16. 3.)

Challenging Tasks

1. Coherent control of LWFA

 Propagation calculation of chirped PW laser pulses in gas

2. Radiation reaction

 Observable laser intensity

 Transition from classical to quantum processes

3. g**-ray production from Compton backscattering**

10. In the nonlinear Compton scattering: $e^- + n\omega_0 \rightarrow e^- + \gamma$

4. Pair production from photon-photon interaction: Breit-Wheeler process: $\gamma + n\omega_0 \rightarrow e^- + e^+$

Summary

- **1. Two PW laser beamlines, 1 PW and 1.5 PW at 30 fs, at CoReLS of IBS are operational for research on high field science. One beamline is being upgraded to 4 PW.**
- **2. Laser wakefield acceleration has been explored. With the two-stage acceleration 3-GeV electron beam was generated. Using the coherent control of LWFA process with PW laser pulses monoenergetic electron beam over 2 GeV was stably produced from a 1- cm gas cell.**
- **3. After the 4 PW laser upgrade we are expecting to achieve electron beams over 10 GeV.**
- **4. Compton backscattering of PW laser pulses with multi-GeV electron beam are being prepared for 10's MeV** g**-ray production. Radiation reaction and pair production will be examined.**

