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Accelerator layout

Charged particles are accelerated and controlled in external fields.

Bunch density decreases in the beam frame as n~1/γ. As a result, the external fields become larger than 
internal (e.g. charge separation) fields.

Accelerator elements:
• Bend (dipole) magnets
• Quadrupole magnets
• Solenoids
• RF cavities with various RF modes
• Vacuum drift spaces
• Undulators (for beam-radiation interactions)

bunch compressoraccelerating/chirping cavities

focusing/defocusing quadsinjector
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Complementary Plasma Physics in accelerators 

Impressive success in Accelerator Physics is possible because of 
efficient control over the beam phase space:

• Focusing
• Compression
• Linearization of the phase space distribution
• Suppression collective effects

In accelerators it is possible to find a regime in which the phase space is 
carefully conditioned and then allow for collective effects to develop



Operated by Los Alamos National Security, LLC for NNSA

Exploring two-stream instability in relativistic beams

undulator
chicane

cavity

Final cavity is required to impose 
overall energy chirp to eliminate the 

residual chirp of each electron stream

FODO
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Numerical simulations

Electrostatic CPIC code was used to simulate N-stream
instability in 1D.

Positrons with the same macroscopic distribution but
different shot noise were added to suppress artificially
large longitudinal space charge in 1D geometry
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Parameters of the scheme were chosen to generate 
microbunching at 100nm.

Large density modulation is observed after 50m of 
vacuum drift

Initial electron distribution
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Treating electron beam as plasma
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Dispersion relation

Numerical dispersion
Cold fluid dispersion
Warm kinetic dispersion
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The frequency has both real (previously unaccounted for) 
and imaginary part

The dispersion looks like unstable sound wave
Re(ω)~k
Im(ω)<0
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Checking with PIC simulations

unstable region is within 10-20%
from analytical estimates

Additional peaks are at 
harmonics of the fundamental

Growth of plasma waves at small wavelengths 
can be explained by two-plasmon coupling
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Instability growth rate (lab frame)
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plasma density in the lab frame, 
i.e. plasma frequency

Lorentz transform of time and space between the lab and beam frames;
(longitudinal mass in the lab frame scales as γ3)
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NLCTA (at SLAC) parameters:
γ=240, Q=0.3nC, r⊥=100µm, τ=0.5ps, ∆Eind=10keV, Nbands=10

the fastest growing mode has 60nm wavelength and 3.6m growth length
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Application to Compton source
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Lab frame resonance condition

Conventional resonant conditions between
coupled waves should be satisfied which
makes ICS similar to Raman scattering
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scattered
light

Microbunched beam can be considered as
the density wave with dispersion relation

ω=βc⋅k

Compton scattering can be considered then
as conventional 3-wave interaction

Beam frame resonance condition

bunched
beam

2
kbB ∝ 103-104 increase over unbunched beam
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Thank you!
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Accelerator Physics
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Characteristic (Newton) equation
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Electron coordinates in 6D phase
space change linearly under linear
forces applied

beam optics
initial distribution 

final distribution 
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Vlasov equation in  Beam Physics
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